Object Pool

Release 1.0

Feb 09, 2020

All Contents

1 Introduction 3
2 Little about resource 5
3 Features 7
3.1 Lazybehaviour L e e e e e e e 7
3.2 Unlimited rE€SOUICE v v vt e e e e e e e e e e e e e e e e 8
3.3 Resource EXpiration e e e e e e e e e e e e e 8
34 Speed Up Creation v v v i e 8
3.5 Customvalidation e e e e e e e e 9
Python Module Index 15
Index 17

Object Pool, Release 1.0

Table of contents

e Introduction
e Little about resource

e Features

Lazy behaviour

Unlimited resource

Resource Expiration
% Limited time resource

* Resource usage policy

Speed up creation

Custom validation

All Contents 1

Object Pool, Release 1.0

2 All Contents

CHAPTER 1

Introduction

Object pool library creates a pool of resource class instance and use them in your project. Pool is implemented using
python built in library Queue.

Let’s say for example, you need multiple firefox browser object in headless mode to be available for client request to
process or some testing or scraping.

» Each time creating a new browser instance is time consuming task which will make client to wait.

* If you have one browser instance and manage with browser tab, it will become cumbersome to maintain and
debug in case of any issue arises.

Object Pool will help you to manage in that situation as it creates resource pool and provides to each client when it
requests. Thus separating the process from one another without waiting or creating new instance on the spot.

New instance creation will happen with ObjectPool but when no resources available in the pool for a client. Object-
Pool will not fail in case resource is not available, but it will create one and provide to client. Thus keeping your
system/process available at the cost of little performance.

https://docs.python.org/3.6/library/queue.html

Object Pool, Release 1.0

4 Chapter 1. Introduction

CHAPTER 2

Little about resource

Resource is a class which will be pooled. Resource class can have following properties.

* Resource can have check_invalid method to provide custom validation. This method should return
boolean values. This will be called while cleaning up of the resource. When this method is not
defined, only

def check_invalid(self, =x=*stats):
"'"'Returns True if the resource 1is valid, otherwise False
return False

rrr

» Resource should have clean_up method to provide clean up process for resource. Since resource
information is not available to object, how a resource should be clean up using this method. It is
advised to keep clean up method mandatory as resource such as database connection or browser
process will affect system performance.

def clean_up(self, =xxstats):
self.browser.quit ()
self.browser = None

* Resource methods check_invalid and clean_up will have keyword argument stats. Stats will be have
below information regarding resource.

— count - resource usage count.

— last_used - last usage time of the resource.

— new - is updated after the time time use or recreated.
Example - Resource class

Let’s have an example of Browser pool for clients. We have below browser class. perquisite for this
testing are below.

¢ Selenium

¢ Geckodriver

Object Pool, Release 1.0

from selenium.webdriver import Firefox, FirefoxProfile
from selenium.webdriver.firefox.options import Options
import time

class FirefoxBrowser:

mmnm

This is browser resource class for ObjectPool. This class demonstrate_
—how to create resource class

and implement methods described in the user guide section.
mimnm

def _ init__ (self):
self.browser = FirefoxBrowser.create_ff browser ()
self.page_title = None

@classmethod
def create_ff browser (cls):
"""Returns headless firefox browser object"""
profile = FirefoxProfile () .set_preference("intl.accept_languages",
—"es")
opts = Options /()
opts.headless = True
browser = Firefox (options=opts, firefox_profile=profile)
return browser

def get_page_title(self, url):
"""Returns page title of the url"""
browser = self.browser
browser.get (url)
self.page_title = browser.title
return self.page_title

def clean_up(self, =xxstats):
"""quits browser and sets None, when this method is called"""
self.browser.quit ()
self.browser = None

def check_invalid(self, =xxstats):
"""Returns invalid=True 1f the browser accessed google web page,
—otherwise False"""
if self.page_title == 'Google':
return True
return False

6 Chapter 2. Little about resource

CHAPTER 3

Features

Resources to client are provided by ObjectPool. Queueing and cleaning up are automatically taken care
by ObjectPool.

¢ get() method used conjunction with with statement.
* get() removes resource from pool and provides to client.

* when client code exits with statement, utilized resource will be queued in the pool to use
after validation.

* get() method provides two object, one is resource and respective stats in the pool.

— resource - resource class instance. Through this, you can call any method in the class
you defined.

— stats - resource statistics. This will be used for you to perform custom validation in
the resource class.

from object_pool import ObjectPool
browser_pool = ObjectPool (FirefoxBrowser)

browser will be created as it is lazy when get () method called.
browser will be placed in the queue when exits with statement.

with browser_pool.get () as (browser, browser_stats):
you can call any method defined in the resource and perform_
—operation

title = browser.get_page_title('https://www.google.co.in/")

Once you define a resource class, you can use below features to create the pool for the resource.

3.1 Lazy behaviour

lazy=True Resource pool will be created with zero resource when initiated. New resource will be created when
requested and pooled till it reach it’s maximum capacity.

Object Pool, Release 1.0

’browser_pool = ObjectPool (FirefoxBrowser, lazy=True)

3.2 Unlimited resource

When max_capacity=0 is set, pool grow unlimited. This option needs to be used with cautious and advised used with
expiry options, as resource grows without clean up which will lead to performance issue.

’browser_pool = ObjectPool (FirefoxBrowser, max_capacity=0)

3.3 Resource Expiration

Resource expiration methods can used to set resource expiry for a resource. Object pool refill the pool with new
resource.

3.3.1 Limited time resource

When pool is created with expires=600, resource will be cleaned up and removed from the pool after 10
mins. expires=0 resource will never expire.

each resource in the pool will expire in 10 mins from the created time.
browser_pool = ObjectPool (FirefoxBrowser, expires=600)

3.3.2 Resource usage policy

When max_reusable=6, resource can be used only 6 times by any client. After this usage limit, resource
will be cleaned up and new resource will be created.

each resource in the pool will expire in 10 mins from the created time
or 20 times used by clients

browser_pool = ObjectPool (FirefoxBrowser, max_reusable=20, expires=600)

3.4 Speed up creation

When cloning=True, object_pool will create new resource by cloning reserved resource. This will not fit for all
resources. Best It should be tested by user, before using it. By default cloning is disabled.

new resource will be created by cloning reserved resource instance.
browser_pool = ObjectPool (FirefoxBrowser, cloning=True)

Seleinum browser or db connection resources will not be able to use cloning. But If
—you have

any custom object which performs long running calculation and creates instance,
—~cloning will

useful that time.

8 Chapter 3. Features

Object Pool, Release 1.0

Reserved resource is a instance of resource class for cloning to create new resource.
This reserved instance will not be part of the pool.

3.5 Custom validation

User’s custom validation can be defined in check_invalid in the resource class. This will be called while cleaning up
of the resource.

Lets say you dont want to access the google web page more than once in the same browser. You can invalidate with
check_invalid method and clean up the browser as below method.

def check_invalid(self, x=xstats):
invalidate browser which accessed google web page to create new resource in,,
—place.
if self.page_title == 'Google':
return True
return False

3.5.1 Dev Guide

Table of contents

* ObjectPool Class

The core module of the object pool creation library and contains all the necessary classes.

ObjectPool Class

class object_pool.pool.ObjectPool (klass, max_capacity=20, min_init=3, max_reusable=20, ex-
pires=600, lazy=False, pre_check=False, post_check=True,

cloning=False)
This is singleton object pool class. It creates pool, checks expiry and validation of the resource.

Parameters
* base_klass — class for which pool will be created.

In the below example, Pool will be created for Browser class and used.

class Browser:
def _ init_ (self):

self.browser = self. cl __._ _create_connection()
@staticmethod
def _ create_connection() :

obj = "connection_object"

return obj

def do_work (self):
return True

(continues on next page)

3.5. Custom validation 9

Object Pool, Release 1.0

(continued from previous page)

def clean_up(self, =xxstats):
print ("close connection object")

def check_invalid(self, =x=xstats):
"'"'"Returns True 1f resource is valid, otherwise False'''
return False

* lazy — by default, resources are created when initiated. lazy option will skip resource
creation on init and will create when the pool item is requested.

* min_init — minimum resources will be created while initiating.

Note: When lazy=True is set, min option is not respected.

* max_capacity — Maximum capacity of the pool. Pool will be created with min_init
capacity. But it go grow up to max_capacity.

Note:

— max_capacity is not a hard constraint to the pool. When the client request for a resource,
and no resources are available for client, new resource will be created and provided to the
client. But this extra resource will not be queue, it will be cleaned up without performing
any validation.

— pool is implemented using Queue. But maxsize is not provided to handle max_capacity.
This is a implementation choice.

— As creation and cleaning up of additional resource performed when pool gets full, This
will slow down the program. This is a cue to check bottleneck on client processing.

* max_reusable — maximum number of times resource can be reused. Once this exceeds,
respective resource will be destroyed and new resource will be created. By default, 20 is set.
You can disable this by setting to 0.

* expires —resource expiration in seconds.

Note: Example: expires=600, Resource will be only alive for 10 minutes from the creation.

* pre_check - resource validation is performed before requesting the resource. This is
disabled by default.

* post_check —resource expiration checked after resource is being used. This is the default
option.

Note: Base class should define clean_up method when expiry is set or max_reusable is
set or check_valid method is defined in the class. If the clean up such as closing database
connection or closing browser are not performed, those process will run in the background
and cause performance issue in the system.

* cloning — reserved resource will be created to create new resource, in case of resource
expiration. Cloning is disabled by default. You can enable by passing cloning=True.

10 Chapter 3. Features

Object Pool, Release 1.0

Note: Reserved resource will be created even lazy=True option provided to reduce the
resource creation time.

>>> class Browser: # Objective pool class
def _ init__ (self):
self. browser = "connected!"

def do_work (self):
return "job done!"

def clean_up(self, =xxstats):
e print ("stats contains resource stats")
>>> # default ConnectionPool options
>>> connection_pool = ObjectPool (Browser, max_capacity=20, min_
—1nit=3, max_reusable=20,
C expires=600, lazy=False, pre_check=False, post_
—check=True, cloning=False)

get ()
Creates contextmanager instance and returns resource and stats

>>> class Connection:
def = init__ (self):
self._conn = "connected!"

def do_work (self):
print ("job done!")

>>> pool = ObjectPool (Connection, min_init=3)

>>>

>>> with pool.get () as (resource, resource_stats):
resource.do_work ()

job done!

get_pool_size ()
Returns the size of the pool (queue).

Any operation on the queue results in different output time to time as the resources are removed from
queue and added back.

>>> pool = ObjectPool (Connection, min_init=3)
>>> print (pool.get_pool_size())
3

static pool_exists (klass)
Return True if the pool is already created, False otherwise.

>>> pool = ObjectPool (Connection, min_init=3)
>>> ObjectPool.pool_exists (Connection)
True

>>> ObjectPool.pool_exists (DummyConnection)
False

destroy ()
Removes pool from the registry and performs clean up.

3.5. Custom validation 11

Object Pool, Release 1.0

When the pool is destroyed and cleanup_func is provided or class has clean_up method defined while
creating, respective clean up method is called to clean up on the object.

Example: When the connection pool is destroyed, all the connection objects in the pool will be closed if
the cleanup method is provided when creating the pool.

>>> class Connection:
def _ init_ (self):
self._conn = "connected!"

def do_work (self):
return "Jjob done!"

def clean_up(self, =*xresource_stats):
return "cleanup performed!"

>>> pool = ObjectPool (Connection, min_init=1)
>>> pool.destroy ()
cleanup performed!

is_pool_full()
Return True if the pool is full, False otherwise.

>>> pool = ObjectPool (Connection, min_init=3, max_capacity=3)
>>> pool.is_pool_full()
True

Note: This method will always return False when max_capacity=0, As the pool grow unlimited.

3.5.2 Readme File

ObjectPool

* Explore the docs »
* Source Code »
* Report Bug »

* Request Feature »

Table of contents

* Object Pool

* Code Example

12 Chapter 3. Features

https://travis-ci.com/dduraipandian/object_pool
https://codecov.io/gh/dduraipandian/object_pool
https://opensource.org/licenses/MIT
https://object-pool.readthedocs.io/en/latest/?badge=latest
https://object-pool.readthedocs.io
https://github.com/dduraipandian/object_pool/
https://github.com/dduraipandian/object_pool/issues
https://github.com/dduraipandian/object_pool/issues/

Object Pool, Release 1.0

Object Pool

Object pool library creates a pool of resource class instance and use them in your project. Pool is implemented using
python built in library Queue.

Let’s say for example, you need multiple firefox browser object in headless mode to be available for client request to
process or some testing or scraping.

» Each time creating a new browser instance is time consuming task which will make client to wait.

* If you have one browser instance and manage with browser tab, it will become cumbersome to maintain and
debug in case of any issue arises.

Object Pool will help you to manage in that situation as it creates resource pool and provides to each client when it
requests. Thus separating the process from one another without waiting or creating new instance on the spot.

How to install

pip install py-object-pool

Source

Find the latest version on GitHub - ObjectPool.

Feel free to fork and contribute!

Requirements

Python 3.6 and above

Code Example

Below example will help you to understand how to create resource class for ObjectPool and use them in your project.
In the below example, Browser is a resource class and ff browser_pool is a pool of Browser.

Please refer the user guide for more details.

Sample resource class

from selenium.webdriver import Firefox, FirefoxProfile
from selenium.webdriver.firefox.options import Options

class FirefoxBrowser:

mmn

This 1s browser resource class for ObjectPool. This class demonstrate how to,
—create resource class

and implement methods described in the user guide section.

mmn

(continues on next page)

3.5. Custom validation 13

https://docs.python.org/3.6/library/queue.html
https://github.com/dduraipandian/object_pool

Object Pool, Release 1.0

(continued from previous page)

def init__ (self):
self.browser = FirefoxBrowser.create_ff browser ()
self.page_title = None

@classmethod
def create_ff browser(cls):
"""Returns headless firefox browser object"""

profile = FirefoxProfile () .set_preference("intl.accept_languages", "es")
opts = Options()
opts.headless = True

browser = Firefox (options=opts, firefox_profile=profile)
return browser

def get_page_title(self, url):
"""Returns page title of the url"""
browser = self.browser
browser.get (url)
self.page_title = browser.title
return self.page_title

def clean_up(self, =xxstats):
"""quits browser and sets None, when this method is called"""
self.browser.quit ()
self.browser = None

def check_invalid(self, =*+*stats):
""M"Returns invalid=True if the browser accessed google web page, otherwise_
—False"""
if self.page_title == 'Google':
return True
return False

Sample client block

from object_pool import ObjectPool
ff_browser_pool = ObjectPool (FirefoxBrowser, min_init=2)

with ff_browser_pool.get () as (browser, browser_stats):
title = browser.get_page_title('https://www.google.co.in/")

Authors

Durai Pandian - Initial work - dduraipandian

License

This project is licensed under the MIT License - see the LICENSE file for details

14 Chapter 3. Features

https://github.com/dduraipandian
LICENSE

Python Module Index

0]
object_pool, 9

15

Object Pool, Release 1.0

16 Python Module Index

Index

D

destroy () (object_pool.pool.ObjectPool method), 11

G

get () (object_pool.pool.ObjectPool method), 11

get_pool_size () (object_pool.pool. ObjectPool
method), 11

|

is_pool_full() (object_pool.pool.ObjectPool
method), 12

O

object_pool (module), 9
ObjectPool (class in object_pool.pool), 9

P

pool_exists () (object_pool.pool.ObjectPool static
method), 11

17

	Introduction
	Little about resource
	Features
	Lazy behaviour
	Unlimited resource
	Resource Expiration
	Speed up creation
	Custom validation

	Python Module Index
	Index

